permission bndry.entity.list
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/entities?filter=string&pageSize=0&pageToken=string&showDeleted=true&skip=0'
{ "entities": [ { … } ], "nextPageToken": "string", "totalSize": 0 }
Entity that has oneof sub entities aka the master entity
Company Sub Entity
curl -i -X POST \
https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/entities \
-H 'Content-Type: application/json' \
-d '{
"name": "string",
"displayName": "string",
"individual": {
"title": "string",
"givenName": "string",
"middle": "string",
"familyName": "string",
"birthDateTime": "2019-08-24T14:15:22Z",
"birthPlace": "string",
"gender": "GENDER_UNSPECIFIED",
"nationality": "string",
"residenceCountry": "string",
"citizenshipCountry": [
"string"
],
"occupation": "string",
"employer": "string",
"alias": "string",
"governmentId": {
"property1": {
"number": "string",
"issuer": "string",
"regionCode": "string",
"expiryDateTime": "2019-08-24T14:15:22Z"
},
"property2": {
"number": "string",
"issuer": "string",
"regionCode": "string",
"expiryDateTime": "2019-08-24T14:15:22Z"
}
}
},
"company": {
"type": "COMPANY_TYPE_UNSPECIFIED",
"industry": "string"
},
"trust": {
"type": "TRUST_TYPE_UNSPECIFIED",
"trust": "string",
"settler": "string",
"trustee": "string",
"deed": "string"
},
"partnership": {
"type": "PARTNERSHIP_TYPE_UNSPECIFIED",
"industry": "string"
},
"soleProprietor": {
"industry": "string"
},
"contactInfo": {
"telephone": [
"string"
],
"businessTelephone": [
"string"
],
"emailAddress": [
"user@example.com"
],
"primaryContact": [
"string"
],
"website": [
"string"
],
"registeredBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"principalBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"residentialAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
]
},
"registration": {
"property1": {
"value": "string",
"registrationDateTime": "2019-08-24T14:15:22Z",
"regionCode": "string",
"tradingName": "string",
"registeredName": "string"
},
"property2": {
"value": "string",
"registrationDateTime": "2019-08-24T14:15:22Z",
"regionCode": "string",
"tradingName": "string",
"registeredName": "string"
}
},
"riskDetails": {
"riskStatus": "RISK_STATUS_UNSPECIFIED",
"riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED",
"riskRating": "RISK_RATING_UNSPECIFIED"
},
"entityRelationships": [
{
"sourceEntity": "string",
"targetEntity": "string",
"type": "RELATIONSHIP_TYPE_UNSPECIFIED"
}
],
"createTime": "2019-08-24T14:15:22Z",
"updateTime": "2019-08-24T14:15:22Z",
"purgeTime": "2019-08-24T14:15:22Z",
"annotations": {
"property1": "string",
"property2": "string"
},
"etag": "string"
}'
Success
Entity that has oneof sub entities aka the master entity
Company Sub Entity
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "string", "displayName": "string", "individual": { "title": "string", "givenName": "string", "middle": "string", "familyName": "string", "birthDateTime": "2019-08-24T14:15:22Z", "birthPlace": "string", "gender": "GENDER_UNSPECIFIED", "nationality": "string", "residenceCountry": "string", "citizenshipCountry": [ … ], "occupation": "string", "employer": "string", "alias": "string", "governmentId": { … } }, "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "string" }, "trust": { "type": "TRUST_TYPE_UNSPECIFIED", "trust": "string", "settler": "string", "trustee": "string", "deed": "string" }, "partnership": { "type": "PARTNERSHIP_TYPE_UNSPECIFIED", "industry": "string" }, "soleProprietor": { "industry": "string" }, "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2019-08-24T14:15:22Z", "updateTime": "2019-08-24T14:15:22Z", "purgeTime": "2019-08-24T14:15:22Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "string" }
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/{name=entities/*}'
Success
Entity that has oneof sub entities aka the master entity
Company Sub Entity
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "string", "displayName": "string", "individual": { "title": "string", "givenName": "string", "middle": "string", "familyName": "string", "birthDateTime": "2019-08-24T14:15:22Z", "birthPlace": "string", "gender": "GENDER_UNSPECIFIED", "nationality": "string", "residenceCountry": "string", "citizenshipCountry": [ … ], "occupation": "string", "employer": "string", "alias": "string", "governmentId": { … } }, "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "string" }, "trust": { "type": "TRUST_TYPE_UNSPECIFIED", "trust": "string", "settler": "string", "trustee": "string", "deed": "string" }, "partnership": { "type": "PARTNERSHIP_TYPE_UNSPECIFIED", "industry": "string" }, "soleProprietor": { "industry": "string" }, "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2019-08-24T14:15:22Z", "updateTime": "2019-08-24T14:15:22Z", "purgeTime": "2019-08-24T14:15:22Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "string" }
curl -i -X DELETE \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/{name=entities/*}'
Success
Entity that has oneof sub entities aka the master entity
Company Sub Entity
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "string", "displayName": "string", "individual": { "title": "string", "givenName": "string", "middle": "string", "familyName": "string", "birthDateTime": "2019-08-24T14:15:22Z", "birthPlace": "string", "gender": "GENDER_UNSPECIFIED", "nationality": "string", "residenceCountry": "string", "citizenshipCountry": [ … ], "occupation": "string", "employer": "string", "alias": "string", "governmentId": { … } }, "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "string" }, "trust": { "type": "TRUST_TYPE_UNSPECIFIED", "trust": "string", "settler": "string", "trustee": "string", "deed": "string" }, "partnership": { "type": "PARTNERSHIP_TYPE_UNSPECIFIED", "industry": "string" }, "soleProprietor": { "industry": "string" }, "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2019-08-24T14:15:22Z", "updateTime": "2019-08-24T14:15:22Z", "purgeTime": "2019-08-24T14:15:22Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "string" }
Entity that has oneof sub entities aka the master entity
Company Sub Entity
curl -i -X PATCH \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/{entity.name=entities/*}' \
-H 'Content-Type: application/json' \
-d '{
"name": "string",
"displayName": "string",
"individual": {
"title": "string",
"givenName": "string",
"middle": "string",
"familyName": "string",
"birthDateTime": "2019-08-24T14:15:22Z",
"birthPlace": "string",
"gender": "GENDER_UNSPECIFIED",
"nationality": "string",
"residenceCountry": "string",
"citizenshipCountry": [
"string"
],
"occupation": "string",
"employer": "string",
"alias": "string",
"governmentId": {
"property1": {
"number": "string",
"issuer": "string",
"regionCode": "string",
"expiryDateTime": "2019-08-24T14:15:22Z"
},
"property2": {
"number": "string",
"issuer": "string",
"regionCode": "string",
"expiryDateTime": "2019-08-24T14:15:22Z"
}
}
},
"company": {
"type": "COMPANY_TYPE_UNSPECIFIED",
"industry": "string"
},
"trust": {
"type": "TRUST_TYPE_UNSPECIFIED",
"trust": "string",
"settler": "string",
"trustee": "string",
"deed": "string"
},
"partnership": {
"type": "PARTNERSHIP_TYPE_UNSPECIFIED",
"industry": "string"
},
"soleProprietor": {
"industry": "string"
},
"contactInfo": {
"telephone": [
"string"
],
"businessTelephone": [
"string"
],
"emailAddress": [
"user@example.com"
],
"primaryContact": [
"string"
],
"website": [
"string"
],
"registeredBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"principalBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"residentialAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
]
},
"registration": {
"property1": {
"value": "string",
"registrationDateTime": "2019-08-24T14:15:22Z",
"regionCode": "string",
"tradingName": "string",
"registeredName": "string"
},
"property2": {
"value": "string",
"registrationDateTime": "2019-08-24T14:15:22Z",
"regionCode": "string",
"tradingName": "string",
"registeredName": "string"
}
},
"riskDetails": {
"riskStatus": "RISK_STATUS_UNSPECIFIED",
"riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED",
"riskRating": "RISK_RATING_UNSPECIFIED"
},
"entityRelationships": [
{
"sourceEntity": "string",
"targetEntity": "string",
"type": "RELATIONSHIP_TYPE_UNSPECIFIED"
}
],
"createTime": "2019-08-24T14:15:22Z",
"updateTime": "2019-08-24T14:15:22Z",
"purgeTime": "2019-08-24T14:15:22Z",
"annotations": {
"property1": "string",
"property2": "string"
},
"etag": "string"
}'
Success
Entity that has oneof sub entities aka the master entity
Company Sub Entity
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "string", "displayName": "string", "individual": { "title": "string", "givenName": "string", "middle": "string", "familyName": "string", "birthDateTime": "2019-08-24T14:15:22Z", "birthPlace": "string", "gender": "GENDER_UNSPECIFIED", "nationality": "string", "residenceCountry": "string", "citizenshipCountry": [ … ], "occupation": "string", "employer": "string", "alias": "string", "governmentId": { … } }, "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "string" }, "trust": { "type": "TRUST_TYPE_UNSPECIFIED", "trust": "string", "settler": "string", "trustee": "string", "deed": "string" }, "partnership": { "type": "PARTNERSHIP_TYPE_UNSPECIFIED", "industry": "string" }, "soleProprietor": { "industry": "string" }, "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2019-08-24T14:15:22Z", "updateTime": "2019-08-24T14:15:22Z", "purgeTime": "2019-08-24T14:15:22Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "string" }
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/{name=entities/*}:undelete'
Success
Entity that has oneof sub entities aka the master entity
Company Sub Entity
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "string", "displayName": "string", "individual": { "title": "string", "givenName": "string", "middle": "string", "familyName": "string", "birthDateTime": "2019-08-24T14:15:22Z", "birthPlace": "string", "gender": "GENDER_UNSPECIFIED", "nationality": "string", "residenceCountry": "string", "citizenshipCountry": [ … ], "occupation": "string", "employer": "string", "alias": "string", "governmentId": { … } }, "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "string" }, "trust": { "type": "TRUST_TYPE_UNSPECIFIED", "trust": "string", "settler": "string", "trustee": "string", "deed": "string" }, "partnership": { "type": "PARTNERSHIP_TYPE_UNSPECIFIED", "industry": "string" }, "soleProprietor": { "industry": "string" }, "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2019-08-24T14:15:22Z", "updateTime": "2019-08-24T14:15:22Z", "purgeTime": "2019-08-24T14:15:22Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "string" }
The resource name of the relationship's source entity. name must start with 'entities/':
this.startsWith('entities/')
The resource name of the relationship's target entity. name must start with 'entities/':
this.startsWith('entities/')
The type of relationship between the source and target entities.
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/{name=entities/*}:addEntityRelationship' \
-H 'Content-Type: application/json' \
-d '{
"entity": "string",
"targetEntity": "string",
"relationshipType": "RELATIONSHIP_TYPE_UNSPECIFIED"
}'
Success
Entity that has oneof sub entities aka the master entity
Company Sub Entity
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "string", "displayName": "string", "individual": { "title": "string", "givenName": "string", "middle": "string", "familyName": "string", "birthDateTime": "2019-08-24T14:15:22Z", "birthPlace": "string", "gender": "GENDER_UNSPECIFIED", "nationality": "string", "residenceCountry": "string", "citizenshipCountry": [ … ], "occupation": "string", "employer": "string", "alias": "string", "governmentId": { … } }, "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "string" }, "trust": { "type": "TRUST_TYPE_UNSPECIFIED", "trust": "string", "settler": "string", "trustee": "string", "deed": "string" }, "partnership": { "type": "PARTNERSHIP_TYPE_UNSPECIFIED", "industry": "string" }, "soleProprietor": { "industry": "string" }, "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2019-08-24T14:15:22Z", "updateTime": "2019-08-24T14:15:22Z", "purgeTime": "2019-08-24T14:15:22Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "string" }
The resource name of the relationship's source entity. name must start with 'entities/':
this.startsWith('entities/')
The resource name of the relationship's target entity. name must start with 'entities/':
this.startsWith('entities/')
The type of relationship between the source and target entities.
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/{name=entities/*}:removeEntityRelationship' \
-H 'Content-Type: application/json' \
-d '{
"entity": "string",
"targetEntity": "string",
"relationshipType": "RELATIONSHIP_TYPE_UNSPECIFIED"
}'
Success
Entity that has oneof sub entities aka the master entity
Company Sub Entity
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "string", "displayName": "string", "individual": { "title": "string", "givenName": "string", "middle": "string", "familyName": "string", "birthDateTime": "2019-08-24T14:15:22Z", "birthPlace": "string", "gender": "GENDER_UNSPECIFIED", "nationality": "string", "residenceCountry": "string", "citizenshipCountry": [ … ], "occupation": "string", "employer": "string", "alias": "string", "governmentId": { … } }, "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "string" }, "trust": { "type": "TRUST_TYPE_UNSPECIFIED", "trust": "string", "settler": "string", "trustee": "string", "deed": "string" }, "partnership": { "type": "PARTNERSHIP_TYPE_UNSPECIFIED", "industry": "string" }, "soleProprietor": { "industry": "string" }, "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2019-08-24T14:15:22Z", "updateTime": "2019-08-24T14:15:22Z", "purgeTime": "2019-08-24T14:15:22Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "string" }
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/{name=entities/*}:EntityRelationships?view=RELATIONSHIP_VIEW_UNSPECIFIED'
{ "entityRelationships": [ { … } ] }
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/api/v1alpha/countries?pageSize=0&pageToken=string'
{ "countries": [ { … } ], "nextPageToken": "string", "totalSize": 0 }