API for the BNDRY platform
BNDRY API (v1alpha)
https://docs.bndry.net/_mock/apis/openapi/
https://api.bndry.app/
Optional. The maximum number of entities to return. The service may return fewer than this value. If unspecified, at most 50 entities will be returned. The maximum value is 1000; values above 1000 will be coerced to 1000.
Optional. A page token, received from a previous ListEntities
call. Provide this to retrieve the subsequent page. When paginating, all other parameters provided to ListEntities
must match the call that provided the page token.
Optional. If true, soft-deleted entities will be included in the response. See AIP-164.
Optional. The number of entities to skip before starting to collect the result set.
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities
- BNDRY API
https://api.bndry.app/v1alpha/entities
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities?pageSize=25&pageToken=ChAIAhABGAE&showDeleted=true&skip=50&filter=John+Smith' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
Success
The list of entities.
A token to retrieve the next page of results, or empty if there are no more results in the list. string.example = ["ChAIAhABGAE"]
{ "entities": [ { … } ], "nextPageToken": "ChAIAhABGAE", "totalSize": 127 }
Required. The entity to create.
Required. The entity to create.
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities
- BNDRY API
https://api.bndry.app/v1alpha/entities
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities?entityId=john-smith-001' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>' \
-H 'Content-Type: application/json' \
-d '{
"name": "string",
"displayName": "Example Financial Services Ltd",
"contactInfo": {
"telephone": [
"+61 2 9876 5432"
],
"businessTelephone": [
"+61 2 9876 5400"
],
"emailAddress": [
"john.smith@example.com"
],
"primaryContact": [
"Sarah Johnson"
],
"website": [
"https://www.example.com"
],
"registeredBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"principalBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"residentialAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
]
},
"registration": {
"property1": {
"value": "12 345 678 901",
"registrationDateTime": "2023-01-15T01:30:15.01Z",
"regionCode": "NSW",
"tradingName": "Example Financial Services",
"registeredName": "Example Financial Services Pty Ltd"
},
"property2": {
"value": "12 345 678 901",
"registrationDateTime": "2023-01-15T01:30:15.01Z",
"regionCode": "NSW",
"tradingName": "Example Financial Services",
"registeredName": "Example Financial Services Pty Ltd"
}
},
"riskDetails": {
"riskStatus": "RISK_STATUS_UNSPECIFIED",
"riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED",
"riskRating": "RISK_RATING_UNSPECIFIED"
},
"entityRelationships": [
{
"sourceEntity": "entities/john-smith",
"targetEntity": "entities/example-financial-services",
"type": "RELATIONSHIP_TYPE_UNSPECIFIED"
}
],
"createTime": "2023-01-15T01:30:15.01Z",
"updateTime": "2023-01-15T01:30:15.01Z",
"purgeTime": "2023-01-15T01:30:15.01Z",
"annotations": {
"property1": "string",
"property2": "string"
},
"etag": "abc123",
"company": {
"type": "COMPANY_TYPE_UNSPECIFIED",
"industry": "Financial Services"
}
}'
Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X DELETE \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }
Required. The entity to update.
The entity's name
field is used to identify the entity to update. Format: entities/{entity}
Required. The entity to update.
The entity's name
field is used to identify the entity to update. Format: entities/{entity}
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X PATCH \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}?updateMask.paths=string' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>' \
-H 'Content-Type: application/json' \
-d '{
"name": "string",
"displayName": "Example Financial Services Ltd",
"contactInfo": {
"telephone": [
"+61 2 9876 5432"
],
"businessTelephone": [
"+61 2 9876 5400"
],
"emailAddress": [
"john.smith@example.com"
],
"primaryContact": [
"Sarah Johnson"
],
"website": [
"https://www.example.com"
],
"registeredBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"principalBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"residentialAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
]
},
"registration": {
"property1": {
"value": "12 345 678 901",
"registrationDateTime": "2023-01-15T01:30:15.01Z",
"regionCode": "NSW",
"tradingName": "Example Financial Services",
"registeredName": "Example Financial Services Pty Ltd"
},
"property2": {
"value": "12 345 678 901",
"registrationDateTime": "2023-01-15T01:30:15.01Z",
"regionCode": "NSW",
"tradingName": "Example Financial Services",
"registeredName": "Example Financial Services Pty Ltd"
}
},
"riskDetails": {
"riskStatus": "RISK_STATUS_UNSPECIFIED",
"riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED",
"riskRating": "RISK_RATING_UNSPECIFIED"
},
"entityRelationships": [
{
"sourceEntity": "entities/john-smith",
"targetEntity": "entities/example-financial-services",
"type": "RELATIONSHIP_TYPE_UNSPECIFIED"
}
],
"createTime": "2023-01-15T01:30:15.01Z",
"updateTime": "2023-01-15T01:30:15.01Z",
"purgeTime": "2023-01-15T01:30:15.01Z",
"annotations": {
"property1": "string",
"property2": "string"
},
"etag": "abc123",
"company": {
"type": "COMPANY_TYPE_UNSPECIFIED",
"industry": "Financial Services"
}
}'
Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:undelete
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}:undelete
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:undelete' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }
correct_name_format // name must start with 'entities/' string.example = ["entities/example-financial-services"]
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:addEntityRelationship
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}:addEntityRelationship
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:addEntityRelationship' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>' \
-H 'Content-Type: application/json' \
-d '{
"targetEntity": "entities/example-financial-services",
"relationshipType": "RELATIONSHIP_TYPE_UNSPECIFIED"
}'
Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }
correct_name_format // name must start with 'entities/' string.example = ["entities/john-smith-001"]
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:removeEntityRelationship
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}:removeEntityRelationship
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:removeEntityRelationship' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>' \
-H 'Content-Type: application/json' \
-d '{
"targetEntity": "entities/john-smith-001",
"relationshipType": "RELATIONSHIP_TYPE_UNSPECIFIED"
}'
Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters. string.example = ["Example Financial Services Ltd"]
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154. string.example = ["abc123"]
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "RISK_RATING_UNSPECIFIED" }, "entityRelationships": [ { … } ], "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:EntityRelationships
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}:EntityRelationships
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}:EntityRelationships?view=RELATIONSHIP_VIEW_UNSPECIFIED' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
{ "entityRelationships": [ { … } ] }
Optional. The maximum number of activities to return. The service may return fewer than this value. If unspecified, at most 50 activities will be returned. The maximum value is 1000; values above 1000 will be coerced to 1000.
Optional. A page token, received from a previous ListEntityActivities
call. Provide this to retrieve the subsequent page. When paginating, all other parameters provided to ListEntityActivities
must match the call that provided the page token.
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}/activityLogs
- BNDRY API
https://api.bndry.app/v1alpha/entities/{entity}/activityLogs
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities/{entity}/activityLogs?pageSize=25&pageToken=ChAIAhABGAE&skip=0' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
{ "activityLogs": [ { … } ], "nextPageToken": "ChAIAhABGAE", "totalSize": 127 }
- Mock server
https://docs.bndry.net/_mock/apis/openapi/v1alpha/activityLogs/{activityLog}
- BNDRY API
https://api.bndry.app/v1alpha/activityLogs/{activityLog}
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/activityLogs/{activityLog}' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'
Success
(IDENTIFIER) The resource name of the activity. Format: activityLog/{activity_log} string.example = ["activityLogs/01234567-89ab-cdef-0123-456789abcdef"]
Required. The type of the activity.
Required. The source that performed the activity.
Required. The payload containing activity-specific data.
Unique identifier for the case (UUID format)
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time()
.
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday()
.
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime()
.
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis()
.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now()
.
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime
object can be converted to this format using strftime
with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime()
to obtain a formatter capable of generating timestamps in this format.
{ "name": "activityLogs/01234567-89ab-cdef-0123-456789abcdef", "type": "ACTIVITY_TYPE_UNSPECIFIED", "source": "ACTIVITY_SOURCE_UNSPECIFIED", "payload": { "hawkRiskRatingResult": { … } }, "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "entityNames": "entities/john-smith-001" }