API for the BNDRY platform
- List all entities
BNDRY API (v1alpha)
- Mock serverhttps://docs.bndry.net/_mock/apis/openapi/v1alpha/activityLogs/{activityLog}
- BNDRY APIhttps://api.bndry.app/v1alpha/activityLogs/{activityLog}
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/activityLogs/{activityLog}' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'Success
Required. The type of the activity.
Required. The source that performed the activity.
- payload
- payload
- payload
- payload
- payload
- payload
- payload
- payload
- payload
- payload
Required. The payload containing activity-specific data.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime object can be converted to this format using strftime with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime object can be converted to this format using strftime with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
{ "name": "activityLogs/01234567-89ab-cdef-0123-456789abcdef", "type": "ACTIVITY_TYPE_UNSPECIFIED", "source": "ACTIVITY_SOURCE_UNSPECIFIED", "payload": { "bndryRiskRatingResult": { … } }, "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "entityNames": [ "entities/john-smith-001" ], "workspace": "workspaces/01234567-89ab-cdef-0123-456789abcdef" }
Optional. The maximum number of entities to return. The service may return fewer than this value. If unspecified, at most 50 entities will be returned. The maximum value is 1000; values above 1000 will be coerced to 1000.
Optional. A page token, received from a previous ListEntities call. Provide this to retrieve the subsequent page. When paginating, all other parameters provided to ListEntities must match the call that provided the page token.
Optional. If true, soft-deleted entities will be included in the response. See AIP-164.
Optional. The number of entities to skip before starting to collect the result set.
Optional. A filter expression that filters the results listed in the response. Filter only currently supports a fuzzy search on display name. See AIP-160 for more details.
- Mock serverhttps://docs.bndry.net/_mock/apis/openapi/v1alpha/entities
- BNDRY APIhttps://api.bndry.app/v1alpha/entities
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X GET \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities?pageSize=25&pageToken=ChAIAhABGAE&showDeleted=true&skip=50&filter=John+Smith&orderBy=displayName+desc' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>'{ "entities": [ { … } ], "nextPageToken": "ChAIAhABGAE", "totalSize": 127 }
Required. The entity to create.
Required. The entity to create.
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154.
- Mock serverhttps://docs.bndry.net/_mock/apis/openapi/v1alpha/entities
- BNDRY APIhttps://api.bndry.app/v1alpha/entities
- curl
- JavaScript
- Node.js
- Python
- Java
- C#
- PHP
- Go
- Ruby
- R
- Payload
curl -i -X POST \
'https://docs.bndry.net/_mock/apis/openapi/v1alpha/entities?entityId=john-smith-001' \
-H 'Authorization: Bearer <YOUR_TOKEN_HERE>' \
-H 'Content-Type: application/json' \
-d '{
"name": "string",
"displayName": "Example Financial Services Ltd",
"contactInfo": {
"telephone": [
"+61 2 9876 5432"
],
"businessTelephone": [
"+61 2 9876 5400"
],
"emailAddress": [
"john.smith@example.com"
],
"primaryContact": [
"Sarah Johnson"
],
"website": [
"https://www.example.com"
],
"registeredBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"principalBusinessAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
],
"residentialAddresses": [
{
"revision": 0,
"regionCode": "string",
"languageCode": "string",
"postalCode": "string",
"sortingCode": "string",
"administrativeArea": "string",
"locality": "string",
"sublocality": "string",
"addressLines": [
"string"
],
"recipients": [
"string"
],
"organization": "string"
}
]
},
"registration": {
"property1": {
"value": "12 345 678 901",
"registrationDateTime": "2023-01-15T01:30:15.01Z",
"regionCode": "NSW",
"tradingName": "Example Financial Services",
"registeredName": "Example Financial Services Pty Ltd"
},
"property2": {
"value": "12 345 678 901",
"registrationDateTime": "2023-01-15T01:30:15.01Z",
"regionCode": "NSW",
"tradingName": "Example Financial Services",
"registeredName": "Example Financial Services Pty Ltd"
}
},
"riskDetails": {
"riskStatus": "RISK_STATUS_UNSPECIFIED",
"riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED",
"riskRating": "string"
},
"entityRelationships": [
{
"sourceEntity": "entities/john-smith",
"targetEntity": "entities/example-financial-services",
"type": "RELATIONSHIP_TYPE_UNSPECIFIED"
}
],
"externalIds": {
"cherryhub": "string",
"custom": {
"property1": "string",
"property2": "string"
}
},
"createTime": "2023-01-15T01:30:15.01Z",
"updateTime": "2023-01-15T01:30:15.01Z",
"purgeTime": "2023-01-15T01:30:15.01Z",
"annotations": {
"property1": "string",
"property2": "string"
},
"etag": "abc123",
"company": {
"type": "COMPANY_TYPE_UNSPECIFIED",
"industry": "Financial Services"
}
}'Success
(OPTIONAL) Optional. A mutable, user-settable field for providing a human-readable name for the entity, to be used in user interfaces. Must be <= 63 characters.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime object can be converted to this format using strftime with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime object can be converted to this format using strftime with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv; gettimeofday(&tv, NULL);
Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp() timestamp.GetCurrentTime()
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the standard toISOString() method. In Python, a standard datetime.datetime object can be converted to this format using strftime with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
Optional. The etag of the resource. Used for optimistic concurrency control as per AIP-154.
{ "name": "string", "displayName": "Example Financial Services Ltd", "contactInfo": { "telephone": [ … ], "businessTelephone": [ … ], "emailAddress": [ … ], "primaryContact": [ … ], "website": [ … ], "registeredBusinessAddresses": [ … ], "principalBusinessAddresses": [ … ], "residentialAddresses": [ … ] }, "registration": { "property1": { … }, "property2": { … } }, "riskDetails": { "riskStatus": "RISK_STATUS_UNSPECIFIED", "riskStatusReason": "RISK_STATUS_REASON_UNSPECIFIED", "riskRating": "string" }, "entityRelationships": [ { … } ], "externalIds": { "cherryhub": "string", "custom": { … } }, "createTime": "2023-01-15T01:30:15.01Z", "updateTime": "2023-01-15T01:30:15.01Z", "purgeTime": "2023-01-15T01:30:15.01Z", "annotations": { "property1": "string", "property2": "string" }, "etag": "abc123", "company": { "type": "COMPANY_TYPE_UNSPECIFIED", "industry": "Financial Services" } }